Drone congregation area

Drone congregation area (DCA) is a place where drones fly most of the time after leaving the nest. The DCA is 30-200 m in diameter and 15-40 m above ground [1][2]. Drones fly back and forth in this area producing audible sound similar to a swarm of bees. Drones can choose among many DCA near the apiary. During its life a drone can visit few different DCA. Sometimes more than one DCA is visited by the same drone during one day [3].

The same place can be chosen by honey bees as DCA year after year [4][5], however, it is not known what makes the places attractive to drones. It was suggested that choice of the places is related to perception of Earth's magnetic field [6][7] or visual features on the ground [8](observations of Buchmann reported in [9]). Usually there is an open space around DCA without trees or hils [10][1] see also [11]. Sometimes it is located over water or forest [12]. Formation of DCA can be affected by pheromones produced by drones [13]. Artificial DCA can be induced with large amounts of queen substance [14]. In order to confirm presence of DCA, caged queen fixed to a balloon is placed in mid-air [15]. Presence of DCA is indicated by drones congregating around the caged queen. Instead of the queen its pheromones can be used [16][17]. DCA can be also observed using radar [9].

In order to reach DCA drones travel up to 7 km and cross mountain ridges 800-1000 m high [5][18]. Mean flight distance of drones is 900 m [19]. The drones prefer DCA located close to the nest [20][21][22].

Number of drones present at DCA depends on weather and time of day. It can range from few hundred to few thousand [23]. In region with high density of honey bee colonies DCA was visited during one hour by 11750±2145 (mean±SD) drones (maximum 15290) [24]. Drones at DCA are not related and represent about 240 colonies [25] see also [26][27]. The same DCA can be visited by different subspecies [5] but timing of the visits can be different [12].

The concentration of drones is highest in the centre of DCA [28]. The diameter of DCA at higher distance from the ground is smaller and its centre is not always in the same place at different heights [28][29]. Drones fly to the DCA along tree rows and other features of landscape at maximum hight above ground 21 m [30]. Neighbouring DCA are often connected by flyways.

Queen is attractive to drones only within DCA. If queen is few meters outside the DCA (both in horizontal and vertical direction) drones stop pursuing her [1]. Distance above the ground where queen is attractive to drones differed between days and it is probably affected by weather [15]. It was suggested that drones visiting DCA release a pheromone which is attractive to queens [31].

Drones collected at DCA can be used to monitor the surrounding population. This can be useful in honey bee conservation areas [32] and for monitoring population density [33].

Review: [34]
Other references: [35][36][37][38][39][40][41][42][43]


  1. Ruttner F., Ruttner H. (1965) Untersuchnungen über die Flugaktivität und das Paarungsverhalten der Drohnen. 2. Beobachtungen an Drohnensammelplätzen. Z. Bienenforsch. 8:1-8.
  2. Ruttner F. (1966) The life and flight activity of drones. Bee World 47:93-100.
  3. Ruttner H., Ruttner F. (1966) Untersuchungen über die Flugaktivität und das Paarungverhalten der Drohnen. 3. Flugweite und Flugrichtung der Drohnen. Z. Bienenforsch. 8:332-354.
  4. Ruttner F. (1962) Drohnensammelplätze. Bienenvater 83:45-47.
  5. Ruttner H., Ruttner F. (1972) Untersuchungen über die Flugaktivität und das Paarungsverhalten der Drohnen, V. Drohnensammelplatze und Paarungsdistanz. Apidologie 3:203-232.
  6. Loper G.M. (1985) Influence of age on the fluctuation of iron in the oenocytes of honey bee (Apis mellifera) drones. Apidologie 16:181-184.
  7. Loper G.M. (1992) Evidence of magnetic influence on the formation of honey bee (Apis mellifera L.) drone congregation areas. Bee Science 2:71–76.
  8. Praagh van J.P., Arendse M.C., Ruttner F. (1976) Messung und Charakteristik von Leucht-oder Strahlungsfeldern an Drohnensammelplätzen (Apis mellifera). Verh. Dtsch. Zool. Ges. 1976:273.
  9. Drake V.A., Reynolds D.R. (2012) Radar entomology: observing insect flight and migration. Cabi, Wallingford, UK.
  10. Zmarlicki C., Morse R.A. (1963) Drone congregation areas. J. Apic. Res. 2:64-66.
  11. Galindo-Cardona A., Monmany A.C., Moreno-Jackson R., Rivera-Rivera C., Huertas-Dones C., Caicedo-Quiroga L., Giray T. (2012) Landscape analysis of drone congregation areas of the honey bee, Apis mellifera. Journal of Insect Science 12:122.
  12. Benstead E. (2009) Genetic composition and phenology of mating drone congregations in the honey bee Apis mellifera. Revue d'Ecologie 64:343–350.
  13. Brandstaetter A.S., Bastin F., Sandoz J.-C. (2014) Honeybee drones are attracted by groups of consexuals in a walking simulator. Journal of Experimental Biology (in press).
  14. Strang G.E. (1970) A study of honey bee drone attraction in the mating response. J. Econ. Entomol. 63:641-645.
  15. Gary N.E. (1963) Observations of mating behaviour in the honeybee. J. Apic. Res. 2:3-13.
  16. Williams J.L. (1987) Wind-directed pheromone trap for drone honey bees (Hymenoptera: Apidae). J Econ Entomol 80:532-536.
  17. Jaffé R. (2010) Using pheromone traps to improve honeybee breeding. The Australasian Beekeeper 111:284-286.
  18. Ruttner H. (1976) Untersuchungen über die Flugaktivität und das Paarungsverhalten der drohnen. VI. Flug auf und über Höhenrücken. Apidologie 7:331-341.
  19. Taylor O.R., Rowell G.A. (1988) Drone abundance, queen flight distance, and the neutral mating model for the honey bee, Apis mellifera. in: Needham G.R., Page R.E., Delfinado-Baker M., Bowman C.E. (Ed.), Africanized honey bees and bee mites. Ellis Horwood, Chichester, UK, pp. 173–183.
  20. Koeniger N., Koeniger G., Pechhacker H. (2005) The nearer the better? Drones (Apis mellifera) prefer nearer drone congregation areas. Insectes Sociaux 52:31–35.
  21. Soland-Reckeweg G. (2006) Genetic differentiation and hybridization in the honeybee (Apis mellifera L.) in Switzerland. PhD thesis, Universität Bern, Bern.
  22. Mortensen A.N., Ellis J.D. (2016) Managed European-Derived Honey Bee, Apis mellifera sspp, Colonies Reduce African-Matriline Honey Bee, A. m. scutellata, Drones at Regional Mating Congregations. PloS one 11:e0161331.
  23. Page R.E., Metcalf R.A. (1982) Multiple mating, sperm utilization, and social evolution. Amer. Nat. 119:263-281.
  24. Koeniger N., Koeniger G., Gries M., Tingek S. (2005) Drone competition at drone congregation areas in four Apis species. Apidologie 36:211–221.
  25. Baudry E., Solignac M., Garnery L., Gries M., Cornuet J.M., Koeniger N. (1998) Relatedness among honeybees (Apis mellifera) of a drone congregation. Proceedings of the Royal Society B: Biological Sciences 265:2009-2014.
  26. Collet T., Cristino A.S., Quiroga C.F.P., Soares A.E.E., Del Lama M.A. (2009) Genetic structure of drone congregation areas of Africanized honeybees in southern Brazil. Genetics and Molecular Biology 32:857–863.
  27. Jaffé R., Dietemann V., Crewe R.M., Moritz R.F.A. (2009) Temporal variation in the genetic structure of a drone congregation area: an insight into the population dynamics of wild African honeybees (Apis mellifera scutellata). Molecular Ecology 18:1511–1522.
  28. Loper G.M., Wolf W.W., Taylor O.R. (1988) The use of radar to detect honey bee (Apis mellifera) drone flight behaviour. in: Needham G.R., Page R.E., Delfinado-Baker M., Bowman C.E. (Ed.), Africanized honey bees and bee mites. Ellis Horwood, Chichester, UK, pp. 193-198.
  29. Loper G.M., Wolf W.W., Taylor O.R. (1987) Detection and monitoring of honeybee drone congregation areas by radar. Apidologie 18:163-172.
  30. Loper G.M., Wolf W.W., Taylor O.R. (1992) Honey bee drone flyways and congregation areas— radar observations. J. Kans. Entomol. Soc. 65:223-230.
  31. Lensky Y., Cassier P., Notkin M., Delorme-Joulie C., Levinsohn M. (1985) Pheromonal activity and fine structure of the mandibular glands of honeybee drones (Apis mellifera L.) (Insecta, Hymenoptera, Apidae). J. Insect Physiol. 31:265-276.
  32. Bertrand B., Alburaki M., Legout H., Moulin S., Mougel F., Garnery L. (2014) MtDNA COI-COII marker and Drone Congregation Area: An efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centers. Molecular ecology resources (in press).
  33. Jaffé R., Dietemann V., Allsopp M.H., Costa C., Crewe R.M., Dallo’olio R., DelaRúa P., El-Niweiri M.A.A., Fries I., Kezic N. et al. (2010) Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conservation Biology 24:583–593.
  34. Collison C. (2008) A closer look — drone congregation areas. Bee Culture 136:25.
  35. Müller E. (1950) Ueber Drohnensammelplatze. Bienenvater 75:264-265.
  36. Bottcher F.K. (1975) Beiträge zur Kenntnis des Paarungsfluges der Honigbiene. Apidologie 6:233-281.
  37. Ruttner H. (1974) Drohnensammelplatze Ein Beispiel von Paarungsverhalten bei Insekten. Anzeiger für Schädlingskunde Pflanzen- und Umweltschutz 47:40-42.
  38. Cooper B.A. (1977) Have you heard a drone assembly? British Isles Bee Breeders' Association, Whitegates, Thulston.
  39. Strange J.P., Sheppard W.S. (2004) Differential genotype contributions in a honey bee mating area., Entomological Society of America Annual Meeting and Exhibition.
  40. Kraus F.B., Koeniger N., Tingek S., Moritz R.F.A. (2005) Using drones for estimating colony number by microsatellite DNA analysis of haploid males in Apis. Apidologie 36:223–229.
  41. Muerrle T.M., Hepburn H.R., Radloff S.E. (2007) Experimental determination of drone congregation areas for Apis mellifera capensis Esch. Journal of Apicultural Research 46:154–159.
  42. Loper G.M., Fierro M.M. (1991) Use of drone trapping and drone release to influence matings of European queens in an Africanized honey bee area (Hymenoptera, Apidae). J Apic Res 30:119–124.
  43. Mortensen A.N., Ellis J.D. (2014) Scientific note on a single-user method for identifying drone congregation areas. Journal of Apicultural Research 53:424–425.